Non-parametric sets of regular realizations over number fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Sets of Polynomials over Number Fields

Let R be a number field or a recursive subring of a number field and consider the polynomial ring R[T ]. We show that the set of polynomials with integer coefficients is diophantine over R[T ]. Applying a result by Denef, this implies that every recursively enumerable subset of R[T ]k is diophantine over R[T ].

متن کامل

BLT-sets over small fields

A BLT-set is a set X of q+l points of the generalized quadrangle Q(4, q), q odd, such that no point of Q(4, q) is collinear with more than 2 points of X. BLT-sets are closely related to flocks of the quadratic cone, elation generalised quadrangles and certain translation planes. In this paper we report on the results of computer searches for BLT-sets for odd q ::; 25. We complete the classifica...

متن کامل

Minimizing representations over number fields

Finding minimal fields of definition for representations is one of the most important unsolved problems of computational representation theory. While good methods exist for representations over finite fields, it is still an open question in the case of number fields. In this paper we give a practical method for finding minimal defining subfields for absolutely irreducible representations. We il...

متن کامل

Jacobi Forms over Number Fields

OF THE DISSERTATION Jacobi Forms over Number Fields by Howard Skogman Doctor of Philosophy in Mathematics University of California San Diego, 1999 Professor Harold Stark, Chair We de ne Jacobi Forms over an algebraic number eld K and construct examples by rst embedding the group and the space into the symplectic group and the symplectic upper half space respectively. We then create symplectic m...

متن کامل

Explicit Chabauty over Number Fields

Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 over a number field K of degree d, and denote its Jacobian by J . Denote the Mordell–Weil rank of J(K) by r. We give an explicit and practical Chabauty-style criterion for showing that a given subset K ⊆ C(K) is in fact equal to C(K). This criterion is likely to be successful if r ≤ d(g − 1). We also show that the only sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2018

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2017.11.023